If it's not what You are looking for type in the equation solver your own equation and let us solve it.
112+96t-16t^2=200
We move all terms to the left:
112+96t-16t^2-(200)=0
We add all the numbers together, and all the variables
-16t^2+96t-88=0
a = -16; b = 96; c = -88;
Δ = b2-4ac
Δ = 962-4·(-16)·(-88)
Δ = 3584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3584}=\sqrt{256*14}=\sqrt{256}*\sqrt{14}=16\sqrt{14}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-16\sqrt{14}}{2*-16}=\frac{-96-16\sqrt{14}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+16\sqrt{14}}{2*-16}=\frac{-96+16\sqrt{14}}{-32} $
| 3(9x+6)=-66 | | 3(9x+6=-66 | | x−0,4x=72 | | l÷3+4=l | | 2.82x+1x9.42x-1=6.34x | | (m+2)(m-1)^3=0 | | 133x=8.4 | | 72x^2-72x=0 | | 4.905x^2-5x+1=0 | | 4.905x^2-10x+1=0 | | x^2+(x-5)^2=36 | | 50*45*x=56520 | | -434-5(p-1)=4 | | 5x+6=88-5x | | 0,87x-63=1,11 | | 7x=2=5x-14 | | q^2-4q+96=0 | | 2x+-10=2x+10 | | 19x+6=31-4x | | x6=910 | | 19x-6=31-4x | | 3x-7=3(×+1) | | 6(x+7)^5=0 | | (x–5)+2(14–3x)=7 | | (x–5)+2(14–3x)=7. | | 4y+7=2y-(3-y) | | x/2+4=x/3-5 | | 2x^2–30=70 | | b/4-6=3b/4-19 | | 5-(x=-2)=x-1 | | 0.6^x=0.12 | | 5x+16+4/5x-26=106 |